Annales Mathematicae et Informaticae 50 (2019) pp. 179-185 DOI: 10.33039/ami.2019.12.001 http://ami.uni-eszterhazy.hu

A Marcinkiewicz–Zygmund type strong law of large numbers for non-negative random variables with multidimensional indices

Tibor Tómács*

Institute of Mathematics and Informatics Eszterházy Károly University, Eger, Hungary tomacs.tibor@uni-eszterhazy.hu

> Submitted: September 2, 2019 Accepted: December 4, 2019 Published online: December 5, 2019

Abstract

In this paper a Marcinkiewicz–Zygmund type strong law of large numbers is proved for non-negative random variables with multidimensional indices, furthermore we give its an application for multi-index sequence of nonnegative random variables with finite variances.

Keywords: Marcinkiewicz–Zygmund type strong law of large numbers, almost sure convergence, non-negative random variables, multidimensional indices

MSC: 60F15

1. Introduction

The Kolmogorov theorem and the Marcinkiewicz–Zygmund theorem are two famous theorems on the strong law of large numbers for X_n $(n \in \mathbb{N})$ sequence of independent identically distributed random variables (see e.g. LOÈVE [8]). By Kolmogorov theorem, there exists a constant b such that $\lim_{n\to\infty} S_n/n = b$ almost surely if and only if $E|X_1| < \infty$, where $S_n = \sum_{k=1}^n X_k$. If the latter condition is satisfied then $b = E X_1$. By Marcinkiewicz–Zygmund theorem, if 0 < r < 2 then

^{*}The author's research was supported by the grant EFOP-3.6.1-16-2016-00001 ("Complex improvement of research capacities and services at Eszterhazy Karoly University").

 $\lim_{n\to\infty} (S_n - bn)/n^{1/r} = 0$ almost surely if and only if $\mathbb{E}|X_1|^r < \infty$, where b = 0 if 0 < r < 1, and $b = \mathbb{E}X_1$ if $1 \le r < 2$.

ETEMADI [1] proved that the Kolmogorov theorem holds for identically distributed and pairwise independent random variables, furthermore KRUGLOV [7] extended the Marcinkiewicz–Zygmund theorem for pairwise independent case if r < 1.

Several papers are devoted to the study of the strong law of large numbers for multi-index sequence of random variables (see e.g. GUT [4], KLESOV [5, 6], FAZEKAS [2], FAZEKAS, TÓMÁCS [3]). For example, Theorem 3.1 of FAZEKAS, TÓMÁCS [3] extends Theorem 2 of KRUGLOV [7] for multi-index case.

In this paper the main result is Theorem 3.1, which is a Marcinkiewicz–Zygmund type strong law of large numbers for non-negative random variables with multidimensional indices. It is a generalization of Theorem 3.1 of FAZEKAS, TÓMÁCS [3] in case $\mathbf{n} \to \infty$. Furthermore we give an application (see Theorem 4.1) for multiindex sequence of non-negative random variables with finite variances. A special case of this result gives Theorem of PETROV [9].

2. Notation

Let \mathbb{N}^d be the positive integer *d*-dimensional lattice points, where *d* is a positive integer. For $\mathbf{n}, \mathbf{m} \in \mathbb{N}^d$, $\mathbf{n} \leq \mathbf{m}$ is defined coordinate-wise, $(\mathbf{n}, \mathbf{m}] = (n_1, m_1] \times (n_2, m_2] \times \cdots \times (n_d, m_d]$ is a *d*-dimensional rectangle and $|\mathbf{n}| = n_1 n_2 \cdots n_d$, where $\mathbf{n} = (n_1, n_2, \ldots, n_d)$, $\mathbf{m} = (m_1, m_2, \ldots, m_d)$. $\sum_{\mathbf{n}}$ will denote the summation for all $\mathbf{n} \in \mathbb{N}^d$. We also use $\mathbf{1} = (1, 1, \ldots, 1) \in \mathbb{N}^d$ and $\mathbf{2} = (2, 2, \ldots, 2) \in \mathbb{N}^d$. Denote the integer part of *x* real number by [x].

We shall say that $\lim_{\mathbf{n}\to\infty} a_{\mathbf{n}} = 0$, where $a_{\mathbf{n}}$ ($\mathbf{n}\in\mathbb{N}^d$) are real numbers, if for all $\delta > 0$ there exists $\mathbf{N}\in\mathbb{N}^d$ such that $|a_{\mathbf{n}}| < \delta \forall \mathbf{n} \geq \mathbf{N}$.

We shall assume that random variables $X_{\mathbf{n}}$ ($\mathbf{n} \in \mathbb{N}^d$) are defined on the same probability space ($\Omega, \mathcal{F}, \mathbf{P}$). E and Var stand for the expectation and the variance.

Remark that a sum or a minimum over the empty set will be interpreted as zero (i.e. $\sum_{\mathbf{n}\in H} a_{\mathbf{n}} = \min_{\mathbf{n}\in H} a_{\mathbf{n}} = 0$ if $H = \emptyset$).

3. The result

The following result is a generalization of Theorem 3.1 of FAZEKAS, TÓMÁCS [3] in case $\mathbf{n} \to \infty$.

Theorem 3.1. Let $X_{\mathbf{n}}$ ($\mathbf{n} \in \mathbb{N}^d$) be a sequence of non-negative random variables, let $b_{\mathbf{n}}$ ($\mathbf{n} \in \mathbb{N}^d$) be a sequence of non-negative numbers, $B_{\mathbf{n}} = \sum_{\mathbf{k} \leq \mathbf{n}} b_{\mathbf{k}}$, $S_{\mathbf{n}} = \sum_{\mathbf{k} < \mathbf{n}} X_{\mathbf{k}}$, c > 0, $K \in \mathbb{N}$ and $0 < r \leq 1$. If

$$B_{\mathbf{n}} - B_{\mathbf{m}} \le c(|\mathbf{n}| - |\mathbf{m}|) \quad \forall \mathbf{n}, \mathbf{m} \in \mathbb{N}^d, \mathbf{n} \ge \mathbf{m}, |\mathbf{n}| - |\mathbf{m}| \ge K$$
(3.1)

and

$$\sum_{\mathbf{n}} \frac{1}{|\mathbf{n}|} \operatorname{P}\left(|S_{\mathbf{n}} - B_{\mathbf{n}}| > \varepsilon |\mathbf{n}|^{1/r}\right) < \infty \quad \forall \varepsilon > 0,$$
(3.2)

then

$$\lim_{\mathbf{n}\to\infty}\frac{S_{\mathbf{n}}-B_{\mathbf{n}}}{|\mathbf{n}|^{1/r}}=0 \quad almost \ surely.$$

Proof. Let $\delta > 0$, $1 < \alpha < \left(\frac{\delta}{2c} + 1\right)^{1/3d}$ and $0 < \varepsilon < \frac{\delta}{2} \left(\frac{\delta}{2c} + 1\right)^{-1/r}$, which imply

$$\varepsilon \alpha^{3d/r} + c(\alpha^{3d} - 1) < \delta. \tag{3.3}$$

Let $k_n = [\alpha^n]$ $(n \in \mathbb{N})$ and $\mathbf{k_n} = (k_{n_1}, k_{n_2}, \dots, k_{n_d})$, where $\mathbf{n} = (n_1, n_2, \dots, n_d) \in \mathbb{N}^d$. It follows from the inequalities

$$\begin{split} &\sum_{\mathbf{n}} \frac{1}{|\mathbf{n}|} \operatorname{P} \left(|S_{\mathbf{n}} - B_{\mathbf{n}}| > \varepsilon |\mathbf{n}|^{1/r} \right) \\ &\geq \sum_{\mathbf{n}} \sum_{\mathbf{h} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \frac{1}{|\mathbf{h}|} \operatorname{P} \left(|S_{\mathbf{h}} - B_{\mathbf{h}}| > \varepsilon |\mathbf{h}|^{1/r} \right) \\ &\geq \sum_{\mathbf{n}} \sum_{\mathbf{h} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \frac{1}{|\mathbf{k}_{\mathbf{n}+1}|} \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \operatorname{P} \left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r} \right) \\ &= \sum_{\mathbf{n}} \frac{|\mathbf{k}_{\mathbf{n}+1} - \mathbf{k}_{\mathbf{n}}|}{|\mathbf{k}_{\mathbf{n}+1}|} \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \operatorname{P} \left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r} \right) \end{split}$$

and condition (3.2) that

$$\sum_{\mathbf{n}} \frac{|\mathbf{k}_{\mathbf{n}+1} - \mathbf{k}_{\mathbf{n}}|}{|\mathbf{k}_{\mathbf{n}+1}|} \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} P\left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r}\right) < \infty.$$
(3.4)

Since $\lim_{n\to\infty} \left(1 - \frac{1}{\alpha^{n+1}} - \frac{1}{\alpha}\right) = 1 - \frac{1}{\alpha} > 0$, so $\left(1 - \frac{1}{\alpha^{n+1}} - \frac{1}{\alpha}\right) > \frac{\alpha - 1}{2\alpha}$ except for finitely many $n \in \mathbb{N}$. This implies that there exists $\mathbf{N}_0 \in \mathbb{N}^d$ such that

$$0 < \left(\frac{\alpha - 1}{2\alpha}\right)^{d} < \prod_{i=1}^{d} \left(1 - \frac{1}{\alpha^{n_{i+1}}} - \frac{1}{\alpha}\right) = \prod_{i=1}^{d} \frac{\alpha^{n_{i+1}} - 1 - \alpha^{n_{i}}}{\alpha^{n_{i+1}}}$$
$$\leq \prod_{i=1}^{d} \frac{[\alpha^{n_{i+1}}] - [\alpha^{n_{i}}]}{[\alpha^{n_{i+1}}]} = \frac{|\mathbf{k_{n+1}} - \mathbf{k_{n}}|}{|\mathbf{k_{n+1}}|} \quad \forall \mathbf{n} = (n_{1}, n_{2}, \dots, n_{d}) \ge \mathbf{N}_{0}.$$

Hence

$$\begin{split} & \left(\frac{\alpha-1}{2\alpha}\right)^d \sum_{\mathbf{n} \ge \mathbf{N}_0} \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \mathbf{P}\left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r}\right) \\ & \le \sum_{\mathbf{n} \ge \mathbf{N}_0} \frac{|\mathbf{k}_{\mathbf{n}+1} - \mathbf{k}_{\mathbf{n}}|}{|\mathbf{k}_{\mathbf{n}+1}|} \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} \mathbf{P}\left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r}\right). \end{split}$$

By this inequality and (3.4), it follows that

$$\sum_{\mathbf{n}\geq\mathbf{N}_{0}}\min_{\mathbf{k}\in(\mathbf{k}_{\mathbf{n}},\mathbf{k}_{\mathbf{n}+1}]} \mathbf{P}\left(|S_{\mathbf{k}}-B_{\mathbf{k}}|>\varepsilon|\mathbf{k}|^{1/r}\right)<\infty.$$
(3.5)

If $n \ge N_0$ then there exists $m_n \in \mathbb{N}^d$ such that $m_n \in (k_n, k_{n+1}]$ and

$$P\left(|S_{\mathbf{m}_{\mathbf{n}}} - B_{\mathbf{m}_{\mathbf{n}}}| > \varepsilon |\mathbf{m}_{\mathbf{n}}|^{1/r}\right) = \min_{\mathbf{k} \in (\mathbf{k}_{\mathbf{n}}, \mathbf{k}_{\mathbf{n}+1}]} P\left(|S_{\mathbf{k}} - B_{\mathbf{k}}| > \varepsilon |\mathbf{k}|^{1/r}\right).$$

Therefore, by (3.5) we have

$$\sum_{\mathbf{n} \ge \mathbf{N}_0} P\left(|S_{\mathbf{m}_n} - B_{\mathbf{m}_n}| > \varepsilon |\mathbf{m}_n|^{1/r} \right) < \infty.$$
(3.6)

By the Borel–Cantelli lemma, (3.6) implies that there exist $\mathbf{N}_1 \in \mathbb{N}^d$ and $A \in \mathcal{F}$ such that $\mathbf{N}_1 \geq \mathbf{N}_0$, $\mathbf{P}(A) = 1$ and

$$\frac{|S_{\mathbf{m}_{\mathbf{n}}}(\omega) - B_{\mathbf{m}_{\mathbf{n}}}|}{|\mathbf{m}_{\mathbf{n}}|^{1/r}} \le \varepsilon \quad \forall \mathbf{n} \ge \mathbf{N}_{1}, \ \forall \omega \in A.$$
(3.7)

Henceforward let $\omega \in A$ be fixed.

If $n \ge N_1$ and $t \in (k_{n+1}, k_{n+2}]$, then by $t \in (m_n, m_{n+2}]$, (3.7) and

$$|\mathbf{m_{n+2}}|^{1/r} \ge |\mathbf{m_n}|^{1/r} \ge |\mathbf{m_n}|$$

we have

$$\frac{S_{\mathbf{t}}(\omega) - B_{\mathbf{t}}}{|\mathbf{t}|^{1/r}} \geq \frac{S_{\mathbf{m}_{\mathbf{n}}}(\omega) - B_{\mathbf{m}_{\mathbf{n}+2}}}{|\mathbf{m}_{\mathbf{n}+2}|^{1/r}} \\
= \frac{S_{\mathbf{m}_{\mathbf{n}}}(\omega) - B_{\mathbf{m}_{\mathbf{n}}}}{|\mathbf{m}_{\mathbf{n}}|^{1/r}} \frac{|\mathbf{m}_{\mathbf{n}}|^{1/r}}{|\mathbf{m}_{\mathbf{n}+2}|^{1/r}} - \frac{B_{\mathbf{m}_{\mathbf{n}+2}} - B_{\mathbf{m}_{\mathbf{n}}}}{|\mathbf{m}_{\mathbf{n}+2}|^{1/r}} \\
\geq -\varepsilon - \frac{B_{\mathbf{m}_{\mathbf{n}+2}} - B_{\mathbf{m}_{\mathbf{n}}}}{|\mathbf{m}_{\mathbf{n}}|}.$$
(3.8)

If $\mathbf{n} = (n_1, n_2, \dots, n_d) \ge \mathbf{N}_0$ and $\mathbf{m}_{\mathbf{n}} = (\mathbf{m}_{\mathbf{n}}^{(1)}, \mathbf{m}_{\mathbf{n}}^{(2)}, \dots, \mathbf{m}_{\mathbf{n}}^{(d)})$ then $[\alpha^{n_i}] < \mathbf{m}_{\mathbf{n}}^{(i)} \le [\alpha^{n_i+1}].$

On the other hand $\mathbf{m}_{\mathbf{n}}^{(i)} \in \mathbb{N}$, hence we get

$$\alpha^{n_i} < \mathbf{m}_{\mathbf{n}}^{(i)} \le \alpha^{n_i+1}. \tag{3.9}$$

This inequality implies

$$|\mathbf{m_{n+2}}| - |\mathbf{m_n}| > \prod_{i=1}^d \alpha^{n_i+2} - \prod_{i=1}^d \alpha^{n_i+1}$$

$$= (\alpha^d - 1) \prod_{i=1}^d \alpha^{n_i + 1}$$

> $(\alpha^d - 1) \alpha^{n_1} \quad \forall \mathbf{n} = (n_1, n_2, \dots, n_d) \ge \mathbf{N}_0$

Since $\lim_{n\to\infty} \alpha^n = \infty$, therefore $\alpha^n \ge K(\alpha^d - 1)^{-1}$ except for finitely many values of $n \in \mathbb{N}$. Hence there exists $\mathbf{N}_2 \in \mathbb{N}^d$ such that $\mathbf{N}_2 \ge \mathbf{N}_1$ and

$$|\mathbf{m_{n+2}}| - |\mathbf{m_n}| > (\alpha^d - 1) \frac{K}{\alpha^d - 1} = K \quad \forall \mathbf{n} \ge \mathbf{N}_2.$$

This inequality implies by (3.1), that

$$B_{\mathbf{m}_{n+2}} - B_{\mathbf{m}_{n}} \le c(|\mathbf{m}_{n+2}| - |\mathbf{m}_{n}|) \quad \forall n \ge \mathbf{N}_{2}.$$
(3.10)

Using (3.9) we have

$$\frac{|\mathbf{m}_{\mathbf{n+2}}|}{|\mathbf{m}_{\mathbf{n}}|} \le \prod_{i=1}^{d} \frac{\alpha^{n_i+3}}{\alpha^{n_i}} = \alpha^{3d} \quad \forall \mathbf{n} = (n_1, n_2, \dots, n_d) \ge \mathbf{N}_2.$$
(3.11)

Hence (3.8), (3.10), (3.11) and (3.3) imply, that if $n \ge N_2$ and $t \in (k_{n+1}, k_{n+2}]$, then

$$\frac{S_{\mathbf{t}}(\omega) - B_{\mathbf{t}}}{|\mathbf{t}|^{1/r}} \ge -\varepsilon - \frac{B_{\mathbf{m}_{\mathbf{n}+2}} - B_{\mathbf{m}_{\mathbf{n}}}}{|\mathbf{m}_{\mathbf{n}}|} \ge -\varepsilon - c\left(\frac{|\mathbf{m}_{\mathbf{n}+2}|}{|\mathbf{m}_{\mathbf{n}}|} - 1\right)$$
$$\ge -\varepsilon - c(\alpha^{3d} - 1) \ge -\varepsilon \alpha^{3d/r} - c(\alpha^{3d} - 1) > -\delta.$$
(3.12)

If $\mathbf{n} \ge \mathbf{N}_2$ and $\mathbf{t} \in (\mathbf{k_{n+1}}, \mathbf{k_{n+2}}]$, then by $\mathbf{t} \in (\mathbf{m_n}, \mathbf{m_{n+2}}]$, $|\mathbf{m_n}|^{1/r} \ge |\mathbf{m_n}|$, (3.7), (3.11), (3.10) and (3.3), we have

$$\begin{split} \frac{S_{\mathbf{t}}(\omega) - B_{\mathbf{t}}}{|\mathbf{t}|^{1/r}} &\leq \frac{S_{\mathbf{m}_{n+2}}(\omega) - B_{\mathbf{m}_{n}}}{|\mathbf{m}_{n}|^{1/r}} \\ &= \frac{S_{\mathbf{m}_{n+2}}(\omega) - B_{\mathbf{m}_{n+2}}}{|\mathbf{m}_{n+2}|^{1/r}} \frac{|\mathbf{m}_{n+2}|^{1/r}}{|\mathbf{m}_{n}|^{1/r}} + \frac{B_{\mathbf{m}_{n+2}} - B_{\mathbf{m}_{n}}}{|\mathbf{m}_{n}|^{1/r}} \\ &\leq \frac{S_{\mathbf{m}_{n+2}}(\omega) - B_{\mathbf{m}_{n+2}}}{|\mathbf{m}_{n+2}|^{1/r}} \frac{|\mathbf{m}_{n+2}|^{1/r}}{|\mathbf{m}_{n}|^{1/r}} + \frac{B_{\mathbf{m}_{n+2}} - B_{\mathbf{m}_{n}}}{|\mathbf{m}_{n}|} \\ &\leq \varepsilon \alpha^{3d/r} + c \left(\frac{|\mathbf{m}_{n+2}|}{|\mathbf{m}_{n}|} - 1\right) \leq \varepsilon \alpha^{3d/r} + c(\alpha^{3d} - 1) < \delta. \end{split}$$

This inequality and (3.12) imply

$$\frac{|S_{\mathbf{t}}(\omega) - B_{\mathbf{t}}|}{|\mathbf{t}|^{1/r}} < \delta \quad \forall \mathbf{n} \ge \mathbf{N}_2, \mathbf{t} \in (\mathbf{k_{n+1}}, \mathbf{k_{n+2}}].$$
(3.13)

If $t \ge k_{N_2+1} + 1$, then there exists $n \ge N_2$ such that $t \in (k_{n+1}, k_{n+2}]$. Hence (3.13) implies

$$\frac{|S_{\mathbf{t}}(\omega) - B_{\mathbf{t}}|}{|\mathbf{t}|^{1/r}} < \delta \quad \forall \mathbf{t} \geq \mathbf{k}_{\mathbf{N}_2 + 1} + 1.$$

Therefore the statement is proved.

4. An application for multi-index sequence of nonnegative random variables with finite variances

In this section we give an application of Theorem 3.1. In case d = r = 1, this result gives Theorem of PETROV [9].

Theorem 4.1. Let $X_{\mathbf{n}}$ ($\mathbf{n} \in \mathbb{N}^d$) be a sequence of non-negative random variables with finite variances, $S_{\mathbf{n}} = \sum_{\mathbf{k} < \mathbf{n}} X_{\mathbf{k}}$, c > 0, $K \in \mathbb{N}$ and $0 < r \leq 1$. If

$$\mathbb{E} S_{\mathbf{n}} - \mathbb{E} S_{\mathbf{m}} \le c(|\mathbf{n}| - |\mathbf{m}|) \quad \forall \mathbf{n}, \mathbf{m} \in \mathbb{N}^{d}, \mathbf{n} \ge \mathbf{m}, |\mathbf{n}| - |\mathbf{m}| \ge K$$
(4.1)

and

$$\sum_{\mathbf{n}} \frac{\operatorname{Var} S_{\mathbf{n}}}{|\mathbf{n}|^{1+2/r}} < \infty, \tag{4.2}$$

then

$$\lim_{\mathbf{n}\to\infty}\frac{S_{\mathbf{n}}-\mathrm{E}\,S_{\mathbf{n}}}{|\mathbf{n}|^{1/r}}=0\quad almost\ surely.$$

Proof. With notation $b_{\mathbf{k}} = \mathbb{E} X_{\mathbf{k}}$ and $B_{\mathbf{n}} = \sum_{\mathbf{k} \leq \mathbf{n}} b_{\mathbf{k}} = \mathbb{E} S_{\mathbf{n}}$, (4.1) implies (3.1). On the other hand, if $\varepsilon > 0$, then the Chebyshev inequality and (4.2) imply

$$\sum_{\mathbf{n}} \frac{1}{|\mathbf{n}|} \operatorname{P}\left(|S_{\mathbf{n}} - B_{\mathbf{n}}| > \varepsilon |\mathbf{n}|^{1/r}\right) \leq \sum_{\mathbf{n}} \frac{1}{|\mathbf{n}|} \frac{\operatorname{Var} \frac{S_{\mathbf{n}}}{|\mathbf{n}|^{1/r}}}{\varepsilon^{2}} = \varepsilon^{-2} \sum_{\mathbf{n}} \frac{\operatorname{Var} S_{\mathbf{n}}}{|\mathbf{n}|^{1+2/r}} < \infty.$$

Therefore (3.2) holds. Hence, using Theorem 3.1, we have that the statement is true. $\hfill \Box$

References

- N. ETEMADI: An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 55.1 (1981), pp. 119–122, DOI: 10.1007/bf01013465.
- [2] I. FAZEKAS: Convergence rates in the Marcinkiewicz strong law of large numbers for Banach space valued random variables with multidimensional indices, Publicationes Mathematicae, Debrecen 32 (1985), pp. 203–209.
- [3] I. FAZEKAS, T. TÓMÁCS: Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publicationes Mathematicae, Debrecen 53.1-2 (1998), pp. 149–161.
- [4] A. GUT: Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, The Annals of Probability 6.3 (1978), pp. 469–482, DOI: 10.1214/aop/1176995531.
- [5] O. I. KLESOV: Strong law of large numbers for random fields with orthogonal values, Dokl. Akad. Nauk. Ukr. SSR Ser. A 7 (1982), pp. 9–12.
- [6] O. I. KLESOV: The law of large numbers for multiple sums of independent identically distributed random variables, Theor. Probab. Math. Statist. 50 (1995), pp. 77–87.

- [7] V. M. KRUGLOV: Strong law of large numbers, in: Stability Problems for Stochastic Models: Proceedings of the Fifteenth Perm Seminar, Perm, Russia, June 2-6, 1992, Moscow, Utrecht, Tokyo: TVP/VSP, 1994, pp. 139–150, ISBN: 90-6764-159-6.
- [8] M. LOÈVE: Probability Theory I. New York: Springer-Verlag, 1977.
- [9] V. V. PETROV: On the strong law of large numbers for a sequence of nonnegative random variables, Zapiski Nauchnnykh Seminarov POMI 384 (2010), pp. 182–184, DOI: 10.1007/ s10958-011-0411-x.