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Abstract

In this paper a Marcinkiewicz–Zygmund type strong law of large num-
bers is proved for non-negative random variables with multidimensional in-
dices, furthermore we give its an application for multi-index sequence of non-
negative random variables with finite variances.
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1. Introduction

The Kolmogorov theorem and the Marcinkiewicz–Zygmund theorem are two fa-
mous theorems on the strong law of large numbers for 𝑋𝑛 (𝑛 ∈ N) sequence of
independent identically distributed random variables (see e.g. Loève [8]). By Kol-
mogorov theorem, there exists a constant 𝑏 such that lim𝑛→∞ 𝑆𝑛/𝑛 = 𝑏 almost
surely if and only if E |𝑋1| < ∞, where 𝑆𝑛 =

∑︀𝑛
𝑘=1 𝑋𝑘. If the latter condition is

satisfied then 𝑏 = E𝑋1. By Marcinkiewicz–Zygmund theorem, if 0 < 𝑟 < 2 then
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lim𝑛→∞(𝑆𝑛 − 𝑏𝑛)/𝑛1/𝑟 = 0 almost surely if and only if E |𝑋1|𝑟 < ∞, where 𝑏 = 0
if 0 < 𝑟 < 1, and 𝑏 = E𝑋1 if 1 ≤ 𝑟 < 2.

Etemadi [1] proved that the Kolmogorov theorem holds for identically dis-
tributed and pairwise independent random variables, furthermore Kruglov [7]
extended the Marcinkiewicz–Zygmund theorem for pairwise independent case if
𝑟 < 1.

Several papers are devoted to the study of the strong law of large numbers for
multi-index sequence of random variables (see e.g. Gut [4], Klesov [5, 6], Fazekas
[2], Fazekas, Tómács [3]). For example, Theorem 3.1 of Fazekas, Tómács [3]
extends Theorem 2 of Kruglov [7] for multi-index case.

In this paper the main result is Theorem 3.1, which is a Marcinkiewicz–Zygmund
type strong law of large numbers for non-negative random variables with multidi-
mensional indices. It is a generalization of Theorem 3.1 of Fazekas, Tómács [3]
in case n → ∞. Furthermore we give an application (see Theorem 4.1) for multi-
index sequence of non-negative random variables with finite variances. A special
case of this result gives Theorem of Petrov [9].

2. Notation

Let N𝑑 be the positive integer 𝑑-dimensional lattice points, where 𝑑 is a positive
integer. For n,m ∈ N𝑑, n ≤ m is defined coordinate-wise, (n,m] = (𝑛1,𝑚1] ×
(𝑛2,𝑚2] × · · · × (𝑛𝑑,𝑚𝑑] is a 𝑑-dimensional rectangle and |n| = 𝑛1𝑛2 · · ·𝑛𝑑, where
n = (𝑛1, 𝑛2, . . . , 𝑛𝑑), m = (𝑚1,𝑚2, . . . ,𝑚𝑑).

∑︀
n will denote the summation for

all n ∈ N𝑑. We also use 1 = (1, 1, . . . , 1) ∈ N𝑑 and 2 = (2, 2, . . . , 2) ∈ N𝑑. Denote
the integer part of 𝑥 real number by [𝑥].

We shall say that limn→∞ 𝑎n = 0, where 𝑎n (n ∈ N𝑑) are real numbers, if for
all 𝛿 > 0 there exists N ∈ N𝑑 such that |𝑎n| < 𝛿 ∀n ≥ N.

We shall assume that random variables 𝑋n (n ∈ N𝑑) are defined on the same
probability space (Ω,ℱ ,P). E and Var stand for the expectation and the variance.

Remark that a sum or a minimum over the empty set will be interpreted as
zero (i.e.

∑︀
n∈𝐻 𝑎n = minn∈𝐻 𝑎n = 0 if 𝐻 = ∅).

3. The result

The following result is a generalization of Theorem 3.1 of Fazekas, Tómács [3]
in case n → ∞.

Theorem 3.1. Let 𝑋n (n ∈ N𝑑) be a sequence of non-negative random variables,
let 𝑏n (n ∈ N𝑑) be a sequence of non-negative numbers, 𝐵n =

∑︀
k≤n 𝑏k, 𝑆n =∑︀

k≤n 𝑋k, 𝑐 > 0, 𝐾 ∈ N and 0 < 𝑟 ≤ 1. If

𝐵n −𝐵m ≤ 𝑐(|n| − |m|) ∀n,m ∈ N𝑑,n ≥ m, |n| − |m| ≥ 𝐾 (3.1)
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and ∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁
< ∞ ∀𝜀 > 0, (3.2)

then
lim

n→∞
𝑆n −𝐵n

|n|1/𝑟 = 0 almost surely.

Proof. Let 𝛿 > 0, 1 < 𝛼 <
(︀

𝛿
2𝑐 + 1

)︀1/3𝑑
and 0 < 𝜀 < 𝛿

2

(︀
𝛿
2𝑐 + 1

)︀−1/𝑟
, which imply

𝜀𝛼3𝑑/𝑟 + 𝑐(𝛼3𝑑 − 1) < 𝛿. (3.3)

Let 𝑘𝑛 = [𝛼𝑛] (𝑛 ∈ N) and kn = (𝑘𝑛1
, 𝑘𝑛2

, . . . , 𝑘𝑛𝑑
), where n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ∈

N𝑑. It follows from the inequalities

∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁

≥
∑︁

n

∑︁

h∈(kn,kn+1]

1

|h| P
(︁
|𝑆h −𝐵h| > 𝜀|h|1/𝑟

)︁

≥
∑︁

n

∑︁

h∈(kn,kn+1]

1

|kn+1|
min

k∈(kn,kn+1]
P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

=
∑︁

n

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

and condition (3.2) that

∑︁

n

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
< ∞. (3.4)

Since lim𝑛→∞
(︀
1 − 1

𝛼𝑛+1 − 1
𝛼

)︀
= 1 − 1

𝛼 > 0, so
(︀
1 − 1

𝛼𝑛+1 − 1
𝛼

)︀
> 𝛼−1

2𝛼 except for
finitely many 𝑛 ∈ N. This implies that there exists N0 ∈ N𝑑 such that

0 <

(︂
𝛼− 1

2𝛼

)︂𝑑

<
𝑑∏︁

𝑖=1

(︂
1 − 1

𝛼𝑛𝑖+1
− 1

𝛼

)︂
=

𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1 − 1 − 𝛼𝑛𝑖

𝛼𝑛𝑖+1

≤
𝑑∏︁

𝑖=1

[𝛼𝑛𝑖+1] − [𝛼𝑛𝑖 ]

[𝛼𝑛𝑖+1]
=

|kn+1 − kn|
|kn+1|

∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0.

Hence
(︂
𝛼− 1

2𝛼

)︂𝑑 ∑︁

n≥N0

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁

≤
∑︁

n≥N0

|kn+1 − kn|
|kn+1|

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
.
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By this inequality and (3.4), it follows that
∑︁

n≥N0

min
k∈(kn,kn+1]

P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
< ∞. (3.5)

If n ≥ N0 then there exists mn ∈ N𝑑 such that mn ∈ (kn,kn+1] and

P
(︁
|𝑆mn −𝐵mn | > 𝜀|mn|1/𝑟

)︁
= min

k∈(kn,kn+1]
P
(︁
|𝑆k −𝐵k| > 𝜀|k|1/𝑟

)︁
.

Therefore, by (3.5) we have
∑︁

n≥N0

P
(︁
|𝑆mn −𝐵mn | > 𝜀|mn|1/𝑟

)︁
< ∞. (3.6)

By the Borel–Cantelli lemma, (3.6) implies that there exist N1 ∈ N𝑑 and 𝐴 ∈ ℱ
such that N1 ≥ N0, P(𝐴) = 1 and

|𝑆mn(𝜔) −𝐵mn |
|mn|1/𝑟

≤ 𝜀 ∀n ≥ N1, ∀𝜔 ∈ 𝐴. (3.7)

Henceforward let 𝜔 ∈ 𝐴 be fixed.
If n ≥ N1 and t ∈ (kn+1,kn+2], then by t ∈ (mn,mn+2], (3.7) and

|mn+2|1/𝑟 ≥ |mn|1/𝑟 ≥ |mn|

we have

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≥ 𝑆mn(𝜔) −𝐵mn+2

|mn+2|1/𝑟

=
𝑆mn(𝜔) −𝐵mn

|mn|1/𝑟
|mn|1/𝑟

|mn+2|1/𝑟
− 𝐵mn+2 −𝐵mn

|mn+2|1/𝑟

≥ −𝜀− 𝐵mn+2 −𝐵mn

|mn|
. (3.8)

If n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0 and mn = (m
(1)
n ,m

(2)
n , . . . ,m

(𝑑)
n ) then

[𝛼𝑛𝑖 ] < m(𝑖)
n ≤ [𝛼𝑛𝑖+1].

On the other hand m
(𝑖)
n ∈ N, hence we get

𝛼𝑛𝑖 < m(𝑖)
n ≤ 𝛼𝑛𝑖+1. (3.9)

This inequality implies

|mn+2| − |mn| >
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+2 −
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1
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= (𝛼𝑑 − 1)

𝑑∏︁

𝑖=1

𝛼𝑛𝑖+1

> (𝛼𝑑 − 1)𝛼𝑛1 ∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N0.

Since lim𝑛→∞ 𝛼𝑛 = ∞, therefore 𝛼𝑛 ≥ 𝐾(𝛼𝑑−1)−1 except for finitely many values
of 𝑛 ∈ N. Hence there exists N2 ∈ N𝑑 such that N2 ≥ N1 and

|mn+2| − |mn| > (𝛼𝑑 − 1)
𝐾

𝛼𝑑 − 1
= 𝐾 ∀n ≥ N2.

This inequality implies by (3.1), that

𝐵mn+2 −𝐵mn ≤ 𝑐(|mn+2| − |mn|) ∀n ≥ N2. (3.10)

Using (3.9) we have

|mn+2|
|mn|

≤
𝑑∏︁

𝑖=1

𝛼𝑛𝑖+3

𝛼𝑛𝑖
= 𝛼3𝑑 ∀n = (𝑛1, 𝑛2, . . . , 𝑛𝑑) ≥ N2. (3.11)

Hence (3.8), (3.10), (3.11) and (3.3) imply, that if n ≥ N2 and t ∈ (kn+1,kn+2],
then

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≥ −𝜀− 𝐵mn+2 −𝐵mn

|mn|
≥ −𝜀− 𝑐

(︂ |mn+2|
|mn|

− 1

)︂

≥ −𝜀− 𝑐(𝛼3𝑑 − 1) ≥ −𝜀𝛼3𝑑/𝑟 − 𝑐(𝛼3𝑑 − 1) > −𝛿. (3.12)

If n ≥ N2 and t ∈ (kn+1,kn+2], then by t ∈ (mn,mn+2], |mn|1/𝑟 ≥ |mn|, (3.7),
(3.11), (3.10) and (3.3), we have

𝑆t(𝜔) −𝐵t

|t|1/𝑟 ≤ 𝑆mn+2(𝜔) −𝐵mn

|mn|1/𝑟

=
𝑆mn+2(𝜔) −𝐵mn+2

|mn+2|1/𝑟
|mn+2|1/𝑟
|mn|1/𝑟

+
𝐵mn+2 −𝐵mn

|mn|1/𝑟

≤ 𝑆mn+2(𝜔) −𝐵mn+2

|mn+2|1/𝑟
|mn+2|1/𝑟
|mn|1/𝑟

+
𝐵mn+2 −𝐵mn

|mn|

≤ 𝜀𝛼3𝑑/𝑟 + 𝑐

(︂ |mn+2|
|mn|

− 1

)︂
≤ 𝜀𝛼3𝑑/𝑟 + 𝑐(𝛼3𝑑 − 1) < 𝛿.

This inequality and (3.12) imply

|𝑆t(𝜔) −𝐵t|
|t|1/𝑟 < 𝛿 ∀n ≥ N2, t ∈ (kn+1,kn+2]. (3.13)

If t ≥ kN2+1 + 1, then there exists n ≥ N2 such that t ∈ (kn+1,kn+2]. Hence
(3.13) implies

|𝑆t(𝜔) −𝐵t|
|t|1/𝑟 < 𝛿 ∀t ≥ kN2+1 + 1.

Therefore the statement is proved.
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4. An application for multi-index sequence of non-
negative random variables with finite variances

In this section we give an application of Theorem 3.1. In case 𝑑 = 𝑟 = 1, this result
gives Theorem of Petrov [9].

Theorem 4.1. Let 𝑋n (n ∈ N𝑑) be a sequence of non-negative random variables
with finite variances, 𝑆n =

∑︀
k≤n 𝑋k, 𝑐 > 0, 𝐾 ∈ N and 0 < 𝑟 ≤ 1. If

E𝑆n − E𝑆m ≤ 𝑐(|n| − |m|) ∀n,m ∈ N𝑑,n ≥ m, |n| − |m| ≥ 𝐾 (4.1)

and ∑︁

n

Var𝑆n

|n|1+2/𝑟
< ∞, (4.2)

then
lim

n→∞
𝑆n − E𝑆n

|n|1/𝑟 = 0 almost surely.

Proof. With notation 𝑏k = E𝑋k and 𝐵n =
∑︀

k≤n 𝑏k = E𝑆n, (4.1) implies (3.1).
On the other hand, if 𝜀 > 0, then the Chebyshev inequality and (4.2) imply

∑︁

n

1

|n| P
(︁
|𝑆n −𝐵n| > 𝜀|n|1/𝑟

)︁
≤
∑︁

n

1

|n|
Var 𝑆n

|n|1/𝑟

𝜀2
= 𝜀−2

∑︁

n

Var𝑆n

|n|1+2/𝑟
< ∞.

Therefore (3.2) holds. Hence, using Theorem 3.1, we have that the statement is
true.
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