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Abstract

In this paper a Marcinkiewicz—Zygmund type strong law of large num-
bers is proved for non-negative random variables with multidimensional in-
dices, furthermore we give its an application for multi-index sequence of non-
negative random variables with finite variances.
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1. Introduction

The Kolmogorov theorem and the Marcinkiewicz—Zygmund theorem are two fa-
mous theorems on the strong law of large numbers for X,, (n € N) sequence of
independent identically distributed random variables (see e.g. LOEVE [8]). By Kol-
mogorov theorem, there exists a constant b such that lim, . S,/n = b almost
surely if and only if E |X;| < oo, where S,, = >, _; Xj. If the latter condition is
satisfied then b = E X;. By Marcinkiewicz—Zygmund theorem, if 0 < r < 2 then
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limy, o0 (S, — bn)/n'/™ = 0 almost surely if and only if E|X;|” < oo, where b =0
fo<r<l,andb=EX;if1<r<2.

ETEMADI [1] proved that the Kolmogorov theorem holds for identically dis-
tributed and pairwise independent random variables, furthermore KrRuGLOV [7]
extended the Marcinkiewicz—Zygmund theorem for pairwise independent case if
r<1.

Several papers are devoted to the study of the strong law of large numbers for
multi-index sequence of random variables (see e.g. GUT [4], KLESOV [5, 6], FAZEKAS
[2], FAZEKAS, TOMACS [3]). For example, Theorem 3.1 of FAZEKAS, TOMACS [3]
extends Theorem 2 of KRUGLOV [7] for multi-index case.

In this paper the main result is Theorem 3.1, which is a Marcinkiewicz—Zygmund
type strong law of large numbers for non-negative random variables with multidi-
mensional indices. It is a generalization of Theorem 3.1 of FAZEKAS, TOMACS [3]
in case n — oo. Furthermore we give an application (see Theorem 4.1) for multi-
index sequence of non-negative random variables with finite variances. A special
case of this result gives Theorem of PETROV [9].

2. Notation

Let N? be the positive integer d-dimensional lattice points, where d is a positive

integer. For n,m € N% n < m is defined coordinate-wise, (n,m] = (ny,m;] x
(ng,ma] X -+ X (ng, mq] is a d-dimensional rectangle and |n| = nyng - --ng, where
n = (ny,n2,...,nq), m = (my,ma,...,mq). »_, will denote the summation for

allm € N, We also use 1 = (1,1,...,1) € N? and 2 = (2,2,...,2) € N%. Denote
the integer part of x real number by [z].

We shall say that limy, o an = 0, where a, (n € Nd) are real numbers, if for
all 6 > 0 there exists N € N¢ such that |a,| < § ¥n > N.

We shall assume that random variables X, (n € N%) are defined on the same
probability space (Q, F,P). E and Var stand for the expectation and the variance.

Remark that a sum or a minimum over the empty set will be interpreted as
zero (i.e. Y5, cp Gn = Minpey an = 0 if H = 0).

3. The result

The following result is a generalization of Theorem 3.1 of FAZEKAS, TOMACS [3]
in case n — oo.

Theorem 3.1. Let X,, (n € N%) be a sequence of non-negative random variables,
let b, (n € Nd) be a sequence of non-negative numbers, By, = >, ., bk, Sn =
>k<n Xk, ¢>0, KENand 0 <r <1. If B

Bpn—Bm <c¢(n| —|m|) VYnmeN'n>m,|n| - |m|>K (3.1)
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and 1
Z—P(\SnfB,J >e|n|1/’“) <o Ve>0, (3.2)
— [n|
then

. Sn - Bn
lim ————

Al [l =0 almost surely.

Proof. Let 6 >0, 1 < a< (% + 1)1/3d

e 4 ¢(a®? — 1) < 6.

Let ky, = [a”] (n € N) and ky, = (kn,, kngy- -5 kny), where n = (nq,na2, ..

N¢. Tt follows from the inequalities

) ﬁ P (IS — Bal > <ln]"")
S |Tll| P (IS — Bul > =[h]/")

0 he(kn,knt1]

1
= Z Z |kn+1| ke(l?j,llr:mrl] | k k| > 5| |

n he(kn,kni1]

_Z\km— ol min P (150 Bl > el )

lknt1|  KE(knknyi]

and condition (3.2) that

and 0 <e< 3 (< +1)_1/T7

which imply

kn .
Z [Knt1 = min P (|sk — By| > a|k|1/r) < .

|kn+1| kG(kmkn+1]

(3.3)

.,nd) S

(3.4)

Since lim,,_, o (1—ﬁ—l) =1 —i > 0, so (1—# —l) > O“Txl except for

[} [}

finitely many n € N. This implies that there exists Ny € N? such that

d d d v v
a—1 1 1 aitl 1 — i
0<< 2a ) <H<1_a"l+1_a):H onitl

i=1 i=1

d n; n;
0 ) fE R NPT N
|kn+1|

Hence

d
a—1
i P( _B kl/T>
("5) X emin, P (18- 5 >
n->INo

Vn = (nq,ne,...

< 3 Bkl P (1Sk — Bil > elk]"/") .

‘kn+1‘ k€ (kn,knt1]

,nd) > No.
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By this inequality and (3.4), it follows that

E min P (|Sk — By| > 6|k|1/r) < 00. (3.5)
ke(knakn+1]
n>Nj

If n > Ny then there exists m,, € N such that m,, € (kn,kn1] and

P (|Smn — Bm.| > €|mn\1/r> = i P (\Sk ~ By > 5|k|1/T) .
c(kn,knt+1

Therefore, by (3.5) we have

P (|Sm, — Bm,| > ejmy|'/") < co. (3.6)
> (
n>Njy

By the Borel-Cantelli lemma, (3.6) implies that there exist N; € N% and A € F
such that Ny > Ng, P(4) =1 and

m _Bm
Mﬁg VYn > Ny, Vw € A. (3.7)

Henceforward let w € A be fixed.
If n > Nj; and t € (kpy1, Knt2], then by t € (my,, my42], (3.7) and

|mn+2|1/r 2 |mn|1/r > |my|

we have
St(w) — By > Smn(w) - an+2
L]t T jmg YT
Sy (W) — Bm, |mu[Y" _ Bm,is — Bm,
lmp /7 fmp |7 lmp2|1/7
Bm — Bm
> _g— _——ot2 T a (3.8)
[y, |

If n = (n1,ng,...,n4) > Ng and m,, = (mfll)7m£12), .. .,mgd)) then

[a™] < m) < [a™ 1],
On the other hand mg) € N, hence we get
o™ <ml) < gnitl (3.9)
This inequality implies
d d

m + — |m > O[ni - Ozni L
n-+2 n
i=1 =1
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d
= (a?—1) H it
i=1

> (a?—1)a™ Vn = (ni,ng,...,nq) > No.
Since lim,, o, @™ = 00, therefore o™ > K(a?—1)"1 except for finitely many values
of n € N. Hence there exists Ny € N¢ such that Ny > N; and

K

Imp 2] — [my| > (@ — 1)ad — = K Vn>N.
This inequality implies by (3.1), that
Bmy,.s — Bm, < ¢(|mpy2| — [my|) Vn > No. (3.10)
Using (3.9) we have
[0 2| < H @ =a®* VYn=(ny,ng,...,ng) > No. (3.11)

[y, |

then

Se(w) = Be  Bmuiz = Bma (|mn+2| _1>
LIRA || B |y |
> —e—c(a—1) > —ea®¥" — ¢(a® - 1) > 4. (3.12)

If n > Ny and t € (kny1,Kni2], then by t € (my, my o], [my|/" > [my|, (3.7),
(3.11), (3.10) and (3.3), we have

St(w) — By < Stz (W) — Bm,

|t|l/r - ‘mn|1/r
_ Smn+2 (w) - an+2 |mn+2‘1/r an+2 B an
jmy 2 |1/7 jmy, |1/7 jmy, |1/7
Smn+2 (w) - an+2 |mn+2‘1/T an+2 - an
B My 2|t/ lmy, |1/ |y |
<ea®¥" 4 ¢ (|r|nn+|2| — 1) < el 4 (1) < 4.
my

This inequality and (3.12) imply

|St(w) — Byl

€1/ <6 Vn >Nyt € (knt1,Knia]. (3.13)

If t > kn,+1 + 1, then there exists n > Ny such that t € (kny1,knt2]. Hence
(3.13) implies
| S (w) — By|
NEG

Therefore the statement is proved. O

< Vt>kn,+1+1.
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4. An application for multi-index sequence of non-
negative random variables with finite variances

In this section we give an application of Theorem 3.1. In case d = r = 1, this result
gives Theorem of PETROV [9].

Theorem 4.1. Let X,, (n € N%) be a sequence of non-negative random variables
with finite variances, Sn =Y ycp Xk, ¢ >0, K €eNand 0 <r < 1. If

ESy —ESm <c¢(n|—|m|]) YnmecN'n>m, |n|—|m|>K (4.1)
and Var 5.,
Z [ < o (4.2)
then S. _ES,

lim —————— =0 almost surely.

n—oo |n|1/7"
Proof. With notation bx = E Xy and Bn = ), ., bk = ESn, (4.1) implies (3.1).
On the other hand, if € > 0, then the Chebyshev inequality and (4.2) imply

1 1/r \n|1/r 9 Var Sy
ZHP(‘S"_BH| > ¢ln| ) Z |n| 2 Z |n‘1+2/7“

Therefore (3.2) holds. Hence, using Theorem 3.1, we have that the statement is
true. O
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